Методы и методики прогноза, поисков, оценки и разведки месторождений

ПЕТРОЛОГИЧЕСКИЕ КРИТЕРИИ ОЦЕНКИ ПОТЕНЦИАЛЬНОЙ АЛМАЗОНОСНОСТИ КИМБЕРЛИТОВ, ВЫДЕЛЕННЫЕ НА ОСНОВЕ ТЕРМООКСИБАРОМЕТРИИ

Рассматриваются петрологические критерии оценки потенциальной алмазоносности кимберлитовых пород на основе термооксибарометрии. Для оценки потенциальной алмазоносности применяются оксибарометры, отражающие окислительно-восстановительные условия в мантии, существующие в поле стабильности алмаза. Основа данной методики – соотношение С:О:Н, или расчёт состава равновесных флюидов по P-T-fO₂ параметрам для отдельных парагенезисов (оливин-ортопироксен-шпинелевых, оливин-ортопироксен-ильменитовых). Фугитивность кислорода рассчитывается по минеральным равновесиям, включающим обмен Fe^{2+} — Fe^{3+} . Методы расчёта P-T-fO₂ параметров для ксенокрист пиропа, ильменита и шпинели реализованы в программном продукте PTQuick-2, в результате чего на диагностической диаграмме C-O-H была выделена «алмазная флюидная область».

Ключевые слова: кимберлит, потенциальная алмазоносность, фугитивность, термооксибарометрия, алмазная флюидная область.

В мире выявлено около 5000 кимберлитовых тел, среди которых только 10 % содержат алмазы, а 1 % может являться потенциальным месторождением. Отмечается тенденция, что в пределах одного кимберлитового поля высокоалмазоносная трубка пространственно ассоциирует с большим количеством убого- или неалмазоносных тел.

В процессе поисковых работ на алмазы выявляются все трубки вне зависимости от степени их алмазоносности, которая устанавливается путём прямого опробования. Таким образом, бо́льшие затраты труда, времени и финансов приходятся на поиски и опробование неалмазоносных тел, преобладающих по количеству. При этом новые кимберлитовые тела фиксируются в основном единичными горными выработками, что на начальном этапе не позволяет объективно установить истинную алмазоносность кимберлитов ввиду небольшого количества вскрытой руды. Для оценки истинной алмазоносности требуется обоснование постановки геологоразведочных работ (ГРР) с проведением трудоёмкого опробования и обогащения руд.

На практике на ранних стадиях ГРР широко применяются минералогические критерии оценки потенциальной алмазоносности кимберлитов по составу минералов-спутников алмазов (МСА), которых в несколько раз больше алмазов. Для такой оценки используются только МСА, кристаллизующиеся совместно с алмазом и соответствующие по составу его включениям. В то же время, как показывает практика, минералогические критерии алмазоносности по содержанию минералов ультраосновных парагенезисов работают не на всех объектах. В разных алмазоносных суб-

УДК 553.81:552.323.6 © С. К. Симаков, Ю. Б. Стегницкий, 2019 DOI: 10.24411/0869-5997-2019-10027

РУДЫ МЕТАЛЛЫ № 4/2019

Симаков Сергей Кириллович

доктор геолого-минералогических наук генеральный директор ¹ simakov1957@yandex.ru

Стегницкий Юрий Богданович

кандидат геолого-минералогических наук заведующий лабораторией ² StegnitskiyYuB@alrosa.ru

¹ ООО «АДАМАНТ», Резидент Сколково, г. Санкт-Петербург

² Научно-исследовательское геологическое предприятие (НИГП) АК «АЛРОСА» (ПАО), г. Санкт-Петербург

провинциях мира отмечается несоответствие между установленной опробованием алмазоносностью и потенциальной, оцениваемой по минералогическим критериям. В этой связи очевидна актуальность усовершенствования известных и разработка новых критериев оценки потенциальной алмазоносности кимберлитов.

Одним из основных методов оценки температуры и давления по пиропам является расчёт температуры и давления на момент их образования по содержанию Ni и Cr (*T* (Ni, Mn) и *P* (Cr)). *P-T* параметры, определённые этим способом, условные, но достаточно приближены к реальным значениям. Однако в настоящее время одной оценки давления и температуры недостаточно, так как основной моделью образования алмазов в мантии является флюидно-расплавная [2]. Поэтому необходима оценка составов флюидов, равновесных с алмазом, для которой требуется расчёт фугитивности кислорода (*fo*₂).

В работе рассматриваются разработанные петрологические критерии оценки потенциальной алмазоносности кимберлитовых трубок на основе термооксибарометрии. Данные критерии основаны на физико-химических моделях образования алмазов из флюидной системы С-О-Н для условий верхней мантии [4, 6, 9, 27, 28]. Из этих моделей следует, что наиболее благоприятными составами для образования алмазов являются водные. Это связано с тем, что они отвечают минимальным содержаниям углерода во флюиде и максимально возможному количеству его свободной фазы (графита или алмаза). Это соответствует, с одной стороны, процессам восстановления СО₂, с другой стороны – процессам окисления углеводородов, что можно выразить реакцией:

$CO_2 + CH_4 = 2C + 2H_2O.$

Таким образом, образование воды по данной реакции отвечает наиболее оптимальным условиям образования и сохранности алмаза из флюида. Выше водных составов по фугитивности кислорода лежат составы H₂O–CO₂, а выше буфера – CCO–CO₂ без свободного углерода, что соответствует устойчивости карбонатов. Ниже – составы H₂O–CH₄±H₂, которые затем переходят в чисто углеводородные (рис. 1). На основании этой модели была объяснена природа алмазоносности так называемых «холодных» палеогеотерм [7]. Известно, что *P-T* параметры алмазоносных кимберлитовых ксенолитов приурочены к «холодным» субдуктивным палео-

Рис. 1. ПОЛЕ УСТОЙЧИВОСТИ АЛМАЗА В СИСТЕМЕ С-О-Н ПРИ 1000 °С И 4,5 ГПА В ЗАВИСИМОСТИ ОТ *fo*₂ И СОДЕР-ЖАНИЯ ВОДЫ [26]:

выше водного максимума состав флюида соответствует H₂O-CO₂, в районе max H₂O флюид является водонасыщенным с малым количеством CO₂ и CH₄, ниже – состав H₂O-CH₄±H₂; QFM – кварц-фаялит-магнетитовый кислородный буфер

геотермам со значениями теплового потока в 36– 41 *mW/m*² [18]. Проведённые ранее расчёты по определённым *P-T-fo*₂ параметрам показали, что алмазоносные парагенезисы и включения в алмазах имеют более низкие содержания атомарного углерода в рассчитанных для них составах флюида, чем неалмазоносные парагенезисы [4, 9, 26, 27].

Для оценки fo₂ верхней мантии и земной коры применяются кислородные барометры (фугометры или оксометры), разработанные на основе минеральных равновесий, включающих обмен Fe⁺²-Fe⁺³. Оценка окислительно-восстановительных условий мантийных ксенолитов в настоящее время базируется в основном на моделях оливин-ортопироксен-шпинелевого и оливин-ортопироксен-ильменитового равновесий. Известны также оливин-ортопироксен-гранатовые оксибарометры [19, 26, 31]. На основании полученных этими методами значений фугитивности кислорода возможен расчёт состава равновесных С-О-Н флюидов для отдельных парагенезисов. Проведённые расчёты составов С-О–Н флюидов по определённым ранее *P-T-fo*2 параметрам для перидотитовых парагенезисов с использованием гранат-ортопироксен-оливинового

Рис. 2. СРЕДНИЕ СОСТАВЫ ФЛЮИДОВ В СИСТЕМЕ С-О-Н, РАССЧИТАННЫЕ ДЛЯ АФРИКАНСКИХ И ЯКУТСКИХ ПЕРИ-ДОТИТОВЫХ ПАРАГЕНЕЗИСОВ НА ОСНОВЕ ПОЛУЧЕННЫХ РАНЕЕ В [26] Р-Т-fO₂ ПАРАМЕТРАХ ПО ГРАНАТ-ОРТОПИ-РОКСЕН-ОЛИВИНОВОМУ ОКСОМЕТРУ:

1 – включения в алмазах (среднее из 15); 2 – алмазоносные перидотиты (среднее из 9); 3 – неалмазоносные перидотиты (среднее из 29) [26]; 4 – средний состав флюидов, экстрагированных из 79 кристаллов алмазов: южноафриканских, бразильских и североамериканских [17], якутских [1]

оксометра показали, что алмазоносные ксенолиты и включения в алмазах имеют более низкие содержания атомарного углерода в рассчитанных для них составах флюида, чем неалмазоносные ксенолиты. На диаграмме С–О–Н их средние составы больше смещены в восстановительную водородную область (рис. 2) и находятся ближе к линии воды, на которой лежат средние составы газово-жидких включений, извлечённых из алмазов по данным Бартошинского [1], Джардини и Мелтона [17]. Средние составы неалмазоносных ксенолитов сильнее смещены в окисленную кислородную область диаграммы С–О–Н и находятся ближе к двууглекислым составам.

Исходя из известного факта, что состав оливина в кимберлитовых ксенолитах соответствует достаточно узкому интервалу (~ 90 %) форстеритового компонента, был разработан гранат-(оливин-ортопироксеновый) оксометр. В этом методе состав оливина задаётся постоянным (90 % *Fo*), а состав *Орх* рассчитывается, исходя из этого условия, по модели оливин-ортопироксенового равновесия [5]. На основании аналогичной методики по расчёту составов оливина и ортопироксена разработана модель ильменитового оксибарометра [8].

Важным моментом при оценке fo₂ для мантийных парагенезисов является определение в них содержания трёхвалентного железа. Его можно определить с помощью «мокрой» химии, мессбауэровской спектроскопии или рассчитать из кристаллохимической формулы минералов. Канил и О'Нейлл [13] показали, что для мантийных парагенезисов содержание Fe⁺³, и рассчитанное стехиометрически, и определённое по мессбауэровской спектроскопии, практически полностью совпадает для шпинели, в меньшей степени – для граната и практически не совпадает для клинопироксенов. Поэтому наиболее точными фугометрами являются шпинелевые. В тоже время известна методика выборки наиболее достоверных стехиометрически рассчитанных значений Fe⁺³ гранатов по содержанию в них Si и Ti [27].

Для создания методики оценки алмазоносности по составу пиропов из литературных источников были отобраны наиболее достоверные по стехиометрически рассчитанному трёхвалентному железу составы пиропов. Это составы, попадающие по сумме Si и Ti в интервал 3,03±0,02 формульных единиц [27]. Для отобранных таким образом анализов пиропов из известных перидотитовых парагенезисов алмазов и алмазоносных ксенолитов Южной Африки, Ботсваны, Анголы, Якутии и Канады были рассчитаны Р-Т-fo2 параметры с использованием термо- и оксибарометров, а затем рассчитан равновесный состав С-О-Н флюида. На основании полученных данных (таблица) на диаграмме С-О-Н появилась возможность выделить «алмазную флюидную область», которая соответствует наиболее потенциально алмазоносным парагенезисам (рис. 3). Эта область соответствует составам флюидов, содержащих < 20,5 % атомарного углерода и > 47 % атомарного водорода. По данным Бартошинского [1], Джардини и Мелтона [17], в неё попадают и средние составы газово-жидких включений, извлечённых из алмазов. Согласно данному критерию, рассчитанные составы потенциально алмазоносных объектов попадают в «алмазную флюидную область», а неалмазоносные и убогоалмазоносные лежат за её пределами.

Для тестирования данного критерия были проведены аналогичные расчёты для пиропов из включений алмазов трубок Орапа и Джваненг (Ботсвана),

Образец	T, °C	lg(fo ₂)	Р, кбар	O, %	H, %	C, %	H ₂ O	CO ₂	CH ₄	CO	H ₂
XM-48	934	-10,5	40,723	33,315	65,97	0,712	97,77	1,33	0,798	0	0,08
YB-198	1122	-9,286	54,525	21,675	71,3	7,024	75,63	0,023	23,04	0	0,58
YB-406	1128	-12,49	57,69	0,606	79,37	20,03	3,084	0	89,87	0	1,04
Uv-624	650	-17,92	35,358	24,987	70	5,01	83,3	0,004	16,53	0	0,09
Uv-146	1044	-14,62	49,852	0,219	79,62	20,16	1,115	0	93,17	0	1,01
Uv-146	1044	-14,62	49,852	0,219	79,62	20,16	1,115	0	93,17	0	1,01
DGD13	1017	-10,8	49,002	20,783	71,66	7,554	73,44	0,016	25,43	0	0,48
DGD21	978	-11,81	46,664	14,974	73,95	11,08	57,79	0,006	40,53	0	0,56
0-4	1205	-8,661	55,701	17,788	72,82	9,392	65,76	0,019	31,95	0	0,88
0-7	1247	-7,807	51,572	26,107	69,52	4,374	85,29	0,154	13,39	0	0,75
O-13	1298	-5,564	51,289	37,685	57,68	4,632	85,99	13,4	0,215	0,3	0,11
0-33	1276	-8,439	50,831	13,987	74,32	11,69	54,82	0,026	41,47	0	1,49
J-6	1251	-5,605	53,323	38,927	55,33	5,741	82,72	16,91	0,097	0,2	0,06
G201	1056	-8,535	36,328	39,184	54,74	6,072	81,7	17,84	0,179	0,2	0,08
Lk 10	1252	-5,439	52,487	42,749	47,72	9,533	71,38	28,24	0,048	0,3	0,04
Lk 15b	1315	-7,538	76,517	11,396	75,09	13,51	47,41	0,002	47,33	0	0,81
Lk 23a	1331	-7,363	80,688	10,569	75,36	14,08	44,78	0,001	49,28	0	0,77
Lk 24	1281	-6,017	45,97	38,401	56,16	5,442	83,53	15,64	0,282	0,4	0,15
Lk 25a	1307	-10,07	63,076	1,138	79,01	19,85	5,786	0	84,32	0	1,58
tk 28a	1293	-10,13	67,852	1,031	79	19,97	5,278	0	84,54	0	1,3
tk 30a	1217	-6,407	47,497	37,474	58,12	4,409	86,67	12,79	0,22	0,2	0,1
P-49	1054	-8,818	34,416	38,004	57	4,998	84,88	14,51	0,289	0,2	0,11
P-98	1249	-9,904	55,631	3,205	78,37	18,43	15,44	0,001	77,15	0	1,59
P-99	1056	-9,038	39,945	33,549	65,18	1,274	95,99	2,647	1,132	0,1	0,17
M-108	1149	-13,79	53,818	0,121	79,59	20,29	0,622	0	92,07	0	1,31

РАССЧИТАННЫЕ Р-Т-*f*02 ПАРАМЕТРЫ И СОСТАВЫ РАВНОВЕСНЫХ С НИМИ ФЛЮИДОВ ДЛЯ ПИРОПОВ ИЗ ИЗВЕСТНЫХ ПЕРИДОТИТОВЫХ ПАРАГЕНЕЗИСОВ АЛМАЗОВ И АЛМАЗОНОСНЫХ КСЕНОЛИТОВ

Примечание. Данные трубок Премьер, Финш, Карове, Орапа, Джваненг (Ботсвана), Мир, Удачная-Восточная (Якутия), Дьявик (Канада) и прииска Акватия (Гана) рассчитаны методами Крейгтона и др. [14], Симакова [5], Райяна и др. [24], Янга и Дуана [32]. Данные для расчётов взяты из работ [10, 11, 15, 16, 20–22, 25, 28, 30].

алмазоносной трубки Какуэле (северо-восток Анголы) и убого- и неалмазоносных трубок Чихолонго, Очинжау, Шикуатите и Виньяти (юго-запад Анголы). Результаты расчёта вынесены на диаграмму С-О-Н (рис. 4), где хорошо видно, что включения из алмазов из трубки Какуэле попадают в «алмазную флюидную область», в то время как включения из неалмазоносных трубок лежат за её пределами.

Таким образом, используя новые петрологические критерии, можно выполнять ранжирование кимберлитовых пород по степени потенциальной алмазоносности. Наиболее достоверным является результат, определённый по комплексу известных минералогических признаков и рассчитанный на основе минеральных составов физико-химических *P-T-fo*₂ параметров с последующей оценкой составов равновесных флюидов, отражающих степень возможности образования и сохранности в них алмазов.

Данные разработки реализованы в новом программном продукте PTQuick-2, который является модернизированной версией известной программы PTQuick [23], где по сравнению с предыдущей содержатся методы, позволяющие определить *P-T-fo*2 параметры для отдельных ксенокрист пиропа, ильменита и шпинели, исходя из их микрозондовых анализов, и рассчитываются составы флюидной системы С–О–Н.

Рис. 3. ГРАНИЧНЫЕ УСЛОВИЯ ВАРИАЦИЙ СОСТАВА ФЛЮИ-ДА — «АЛМАЗНАЯ ФЛЮИДНАЯ ОБЛАСТЬ» В СИСТЕМЕ С-О-Н ПО РЕЗУЛЬТАТАМ РАСЧЁТОВ (см. таблицу):

1 – составы рассчитанных флюидов; 2 – средний состав газово-жидких включений, экстрагированных из южноафриканских, бразильских, североамериканских и якутских алмазов по [17] и [1]

Рис. 4. СРЕДНИЕ СОСТАВЫ ФЛЮИДОВ В СИСТЕМЕ С-О-Н, РАССЧИТАННЫЕ ДЛЯ ПИРОПОВЫХ КСЕНОКРИСТ ИЗ АЛМА-ЗОНОСНЫХ И НЕАЛМАЗОНОСНЫХ ТРУБОК АНГОЛЫ И ВКЛЮ-ЧЕНИЙ ИЗ АЛМАЗОВ ТРУБОК ОРАПА И ДЖВАНЕНГ И НА ОС-НОВЕ ПОЛУЧЕННЫХ Р-Т-*f*0₂ ПАРАМЕТРОВ:

включения из алмазов: 1 – трубок Орапа и Джваненг (среднее из 5), 2 – алмазоносной трубки Какуэле (среднее из 20), убого- и неалмазоносных трубок: 3 – Очинжау (среднее из 11), 4 – Шикуатите (среднее из 9), 5 – Чихолонго (среднее из 8), 6 – Виньяти (среднее из 5); данные для расчётов взяты из работ [3, 12, 16, 30]

СПИСОК ЛИТЕРАТУРЫ

- Бартошинский З. В. Газовые примеси в алмазах Якутии / З. В. Бартошинский, С. Н. Бекеша, Т. Г. Винниченко // Минералогический сборник Львовского университета. – 1987. – № 41 (1). – С. 25–32.
- Похиленко Н. П. Взаимоотношения карбонатитового метасоматоза деплетированных перидотитов литосферной мантии с алмазообразованием и карбонатит-кимберлитовым магматизмом / Н. П. Похиленко, А. М. Агашев, К. Д. Литасов, Л. Н. Похиленко // Геология и геофизика. – 2015. – Т. 56, № 1–2. – С. 361–383.
- Романько Е. Ф. Кимберлиты юго-западной Анголы / Е. Ф. Романько, В. Т. Подвысоцкий, К. Н. Егоров, Д. Б. Дьяконов. – М.: Геоинформмарк, 2005. – 118 с.
- Симаков С. К. Зависимость алмазоносности шпинельсодержащих глубинных лерцолитов от окислительно-восстановительной обстановки в момент их образования / С. К. Симаков // Доклады Академии Наук. – 1994. – Т. 335, № 1. – С. 88–90.
- 5. Симаков С. К. Модель гранатового оксибарометра для мантийных перидотитов и оценка потенциальной алмазоносности на его основе / С. К. Симаков // Доклады Академии Наук. – 2013. – Т. 448, № 4. – С. 443– 445.
- Симаков С. К. Новый петрологический критерий предварительной оценки алмазоносности глубинных мантийных пород / С. К. Симаков, В. И. Ваганов // Доклады Академии Наук. – 1992. – Т. 323, № 3. – С. 531–534.
- 7. Симаков С. К. Природа алмазоносности «холодных» палеогеотерм / С. К. Симаков // Доклады Академии Наук. 2018. Т. 481, № 4. С. 444–446.
- Симаков С. К. Расчет равновесного С–О–Н флюида для ильменитовых ксенокрист и оценка потенциальной алмазоносности на его основе / С. К. Симаков // Доклады Академии Наук. – 2014. – Т. 458, № 3. – С. 333–335.
- 9. Симаков С. К. Связь алмазоносности ксенолитов с окислительно-восстановительными условиями верхней мантии / С. К. Симаков, Л. П. Никитина // Геохимия. 1995. № 2. С. 161–173.
- Соболев Н. В. Глубинные включения в кимберлитах и проблема состава верхней мантии / Н. В. Соболев. – Новосибирск : Наука, 1974. – 264 с.
- Соболев Н. В. Ксенолиты алмазоносных перидотитов в кимберлитах и проблема происхождения алмазов / Н. В. Соболев, Н. П. Похиленко, Э. С. Ефимова // Геология и геофизика. – 1984. – № 12. – С. 63–80.
- Ashchepkov I. V. Composition and thermal structure of the lithospheric mantle beneath kimberlite pipes from the Catoca cluster, Angola / I. V. Ashchepkov [et al.] // Tectonophysics. – 2012. – V. 530–531. – P. 128–151.
- 13. Canil D. Distribution of ferric iron in some upper-mantle assemblages / D. Canil, H. S. C. O'Neill // Journal of Petrology. 1996. V. 37, № 3. P. 609–635.
- Creighton S. A semi-empirical manganese-in-garnet single crystal thermometer / S.Creighton // Lithos. – 2009. – V. 112 (Special Issues). – P. 177–182.

- 15. Creighton S. Diamondiferous peridotitic micro-xenoliths from the Diavik Diamond Mine, NT / S. Creighton, T. Stachel, H. McLean [et al.] // Contributions to Mineralogy and Petrology. – 2008. – V. 155. – P. 541–554.
- Deines P. New insights into the occurrence of ¹³C-depleted carbon in the mantle from two closely associated kimberlites: Letlhakane and Orapa, Botswana / P. Deines, J. W. Harris // Lithos. 2004. V. 77. P. 125–142.
- Giardini A. A. Gases released from natural and synthesis diamonds by crushing under high vacuum at 200 °C, and their significance to diamond genesis / A. A. Giardini, C. E. Melton // Fortschritte Der Mineralogie. – 1975. – V. 52. – P. 455–464.
- Grutter H. Cr-Saturation Arrays in Concentrate Garnet Compositions from Kimberlite and their Use in Mantle Barometry / H. Grutter, D. Latti, A. Menzies // Journal of Petrology. – 2006. – V. 47, № 4. – P. 801–820.
- 19. *Gudmundson G*. Experimental tests of garnet peridotite oxygen barometry / G. Gudmundson, B. J. Wood // Contributions to Mineralogy and Petrology. 1995. V. 119, № 1. P. 56–67.
- Gurney J. J. Inclusions in Premier mine diamonds. Trans / J. J. Gurney, I. W. Harris, R. S. Rickard, R. O. Moore // Geological Society of South Africa. – 1985. – V. 88. – P. 301– 310.
- Motsama T. Mineral inclusions in diamonds from Karowe Mine, Botswana: super-deep sources for super-sized diamonds? / T. Motsama, J. W. Harris, T. Stachel, D. G. Parson // Mineralogy and Petrology. – 2018. – V. 112 – P. 169–180.
- 22. Pokhilenko N. P. Megacrystalline dunite and peridotites: host for Siberian diamonds / N. P. Pokhilenko, D. G. Pearson, F. R. Boyd, N. V. Sobolev // Carnegie Institution of Washington. Year book. – 1991. – V. 90, № 2250. – P. 11–23.
- PT_Quick: программа для определения условий равновесия минеральных парагенезисов методами классической геотермобарометрии / С. К. Симаков, Д. В. Доливо-Добровольский. – 2009. – URL: http://www.dimadd. ru/ru/Programs/ptquick. Дата обращения 12.06.19.

- Ryan C. G. Garnet geotherms: pressure-temperature data from Cr-pyrope garnet xenocrysts in volcanic rocks / C. G. Ryan, W. L. Griffin, N. J. Pearson // Journal of Geophysical Research. – 1996. – V. 101 (B3). – P. 5611–5625.
- 25. *Shee S. R.* Two diamond-bearing peridotite xenoliths from Finsh kimberlite, South Africa / S. R. Shee, J. J. Gurney, D. N. Robinson // Contributions to Mineralogy and Petrology. 1982. V. 81. P. 148–156.
- 26. Simakov S. K. Redox state of Earth's upper mantle peridotites under the ancient cratons and its connection with diamond genesis / S. K. Simakov // Geochimica et Cosmohimica Acta. – 1998. – V. 62, № 10. – P. 1811–1820.
- Simakov S. K. Redox state of eclogites and peridotites from sub-cratonic upper mantle and a connection with diamond genesis / S. K. Simakov // Contributions to Mineralogy and Petrology. – 2006. – V. 151. – P. 282–296.
- 28. *Stachel T*. Diamond formation Where, when and how? / T. Stachel, R. W. Luth // Lithos. – 2015. – V. 220–223. – P. 200–220.
- Stachel T. Diamond precipitation and mantle metasomatism evidence from the trace element chemistry of silicate inclusions in diamonds from Akwatia, Ghana / T. Stachel, J. W. Harris // Contributions to Mineralogy and Petrology. 1997. V. 129. P. 143–154.
- Stachel T. Diamondiferous lithospheric roots along the western margin of the Kalahari Craton – the peridotitic inclusion suite in diamonds from Orapa and Jwaneng / T. Stachel, K. S. Viljoen, P. McDade, J. W. Harris // Contributions to Mineralogy and Petrology. – 2004. – V. 147. – P. 32–47.
- Stagno V. The oxidation state of the mantle and the extraction of carbon from Earth's interior / V. Stagno, D. O. Ojwang, C. A. McCammon, D. J. Frost // Nature. – 2013. – V. 493. – P. 84–90.
- Zhang C. A model for C–O–H fluid in the Earth's mantle / C. Zhang, Z. H. Duan // Geochimica et Cosmohimica Acta. – 2009. – V. 73. – P. 2089–2102.

PETROLOGICAL EVALUATION CRITERIA OF KIMBERLITE DIAMOND POTENTIAL IDENTIFIED ON THE BASIS OF THERMOXIDE BAROMETRY

S. K. Simakov¹, Yu. B. Stegnitsky² (¹LLC ADAMANT, ²Skolkovo Resident Research geological prospecting company JSC ALROSA (PJSC), St. Petersburg)

Petrological evaluation criteria of kimberlite rocks diamond potential based on thermoxide barometry are discussed. To evaluate diamond potential, oxygen barometers reflecting redox conditions in the mantle existing in the diamond stable field are used. This method is based on C:O:H ratio or calculation of equilibrium fluid composition by P-T-fo₂ parameters for individual parageneses (olivine-orthopyroxene-spinel, olivine-orthopyroxene-ilmenite). Oxygen fugacity is calculated by mineral equilibrium including Fe^{2+} - Fe^{3+} exchange. Calculation methods of P-T-fo₂ parameters for pyrope, ilmenite and spinel xenocrysts are realized in PTQuick-2 software resulting in «diamond fluid area» identification in C-O-H diagnostic chart.

Key words: kimberlite, diamond potential, fugacity, thermoxide barometry, diamond fluid area.

