Руды и металлы № 3/2024 Ores and metals № 3/2024

МЕТОДЫ И МЕТОДИКИ ПРОГНОЗА, ПОИСКОВ, ОЦЕНКИ И РАЗВЕДКИ МЕСТОРОЖДЕНИЙ РУДЫ ⊗ МЕТАЛЛЫ

УДК 552.23

Изотопный состав кислорода-углерода и стронция в первичных карбонатитах мира: сводка данных и линейные тренды

Болонин А.В.

ФГБУ «Центральный научно-исследовательский геологоразведочный институт цветных и благородных металлов», г. Москва, Россия

Аннотация. Выполнен статистический регрессионный анализ сводки собранных из опубликованной литературы изотопных данных по 176 карбонатитовым проявлениям мира (всего 1829 парных значений б¹⁸О-б¹³С в первичных карбонатитах). В большинстве проявлений в значениях δ^{18} О- δ^{13} С выявлены отчётливые линейные тренды, аппроксимируемые на диаграммах векторами по формуле регрессии у = kx + b. Выделяются тренды трёх направлений. Доминирует тренд с угловым коэффициентом k в диапазоне 0,0÷+0,6 и в среднем +0,31 (прямая корреляция δ^{18} O- δ^{13} C). В литературе его связывают с релеевским высокотемпературным фракционированием карбонатитовых расплавов или с их седиментационной коровой контаминацией. Второй тренд с k от 0,0 до -0,7 (обратная корреляция δ¹⁸O-δ¹³C) связывают с дегазацией CO₂ из расплавов. Редок третий тренд с k от +0,6 до +1,5. В остальных карбонатитовых проявлениях линейные тренды в значениях δ^{18} О- δ^{13} С не обнаруживаются. Это может быть следствием совместного действия разнонаправленных линейных трендов. В этой связи универсальным изотопным показателем для всех карбонатитовых проявлений принята начальная точка трендовых векторов. На диаграмме δ¹⁸O-δ¹³C в поле начальных точек оконтурен бокс РС-90, включающий 90 % проявлений первичных карбонатитов. Координаты угловых точек бокса $\delta^{18}O-\delta^{13}C$ ‰: (+5÷-8), (+5÷-5), (+5,5÷-2,5), (+12÷-2,5), (+12÷-7), (+9÷-8,5). *PC*-90 по изотопному составу углерода подразделён на две части значением δ¹³C = −5,2 ‰. Тем самым предполагаются разные по изотопному составу углерода глубинные источники. Корреляция в изотопном составе кислорода-углерода и стронция в карбонатитах не обнаруживается, что предполагает неоднородность глубинных источников также и по изотопному составу стронция.

Ключевые слова: карбонатиты, изотопы кислорода, углерода и стронция, линейные тренды.

Для цитирования: Болонин А. В. Изотопный состав кислорода–углерода и стронция в первичных карбонатитах мира: сводка данных и линейные тренды. Руды и металлы. 2024. № 3. С. 5-27. DOI: 10.47765/0869-5997-2024-10011.

Oxygen-Carbon and Strontium Isotope Composition in Primary Carbonatites of the World: The Data Summary and Linear Trends

Bolonin A. V.

FSBI "Central Research Institute of Geological Prospecting for Base and Precious Metals", Moscow, Russia

Annotation. A statistical regression analysis was performed of a summary of borrowed literary isotopic data on 176 carbonatite occurrences worldwide (a total of 1829 paired $\delta^{18}O$ - $\delta^{13}C$ values in primary carbonatites). For most of the occurrences, distinct linear trends in $\delta^{18}O-\delta^{13}C$ values were revealed, approximated in diagrams by vectors using the regression formula y = kx + b. Trends in three directions are distinguished. The dominating trend possesses the angular coefficient k in the range of $0.0 \div + 0.6$, averaging at + 0.31 (direct correlation δ^{18} O- δ^{13} C). In the literature, it is associated with the Rayleigh high-temperature fractionation of carbonatite melts or with their sedimentary crustal contamination. The second trend with k from 0.0 to -0.7 (inverse correlation $\delta^{18}O-\delta^{13}C$) is associated with CO₂ degassing from the melts. The third trend with k from +0.6 to +1.5 is rare. In other carbonatite occurrences, no linear trends in $\delta^{18}O-\delta^{13}C$ values are detected. This may be a consequence of a combined action of the multidirectional linear trends. In this regard, the initial point of the trend vectors is accepted as a universal isotope indicator for all the carbonatite occurrences. In the δ^{18} O- δ^{13} C diagram, the box PC-90 is outlined in the field of the initial points, including 90 % of the primary carbonatite occurrences. The coordinates of the corner points of the box in δ¹⁸O-δ¹³Č ‰ are (+5÷-8), (+5÷-5), (+5.5÷-2.5), (+12÷-2.5), (+12÷-7), (+9÷-8.5). The box PC-90 is subdivided into two parts by the carbon isotope composition, using the value $\delta^{13}C = -5.2$ %. This suggests that the deep sources differ in carbon isotope composition. No correlation is found in the oxygen-carbon and strontium isotope compositions in the carbonatites, which suggests that the deep sources are also heterogeneous in the strontium isotope composition.

Keywords: carbonatites; oxygen, carbon, and strontium isotopes; linear trends.

For citation: Bolonin A. V. Oxygen–Carbon and Strontium Isotope Composition in Primary Carbonatites of the World: The Data Summary and Linear Trends. Ores and metals, 2024, № 3, pp. 5–27. DOI: 10.47765/0869-5997-2024-10011.

Введение. По литературным источникам из 176 карбонатитовых проявлений мира собраны 1829 пар сопряжённых значений изотопного состава кислорода и углерода (δ^{18} О- δ^{13} С) в первичных карбонатитах. Выполнена статистическая обработка значений, включая линейный регрессионный анализ по формуле y = kx + b. Дополнительно собраны данные по изотопному составу стронция в тех же карбонатитовых проявлениях. Сводка изотопных данных публиковалась ранее [3]. Обновлённая сводка превосходит раннюю по количеству и полноте статистической обработки данных.

В сводку включены изотопные данные по пробам, которые авторы литературных источников классифицируют как первичные карбонатиты. Карбонатитовые проявления представляют собой объекты разных форм и размеров – комплексы, массивы, штоки, тела, дайки, фациальные зоны. Изотопные анализы выполнены по материалу карбонатных пород (сёвит, альвикит, бефорсит и др.), реже по монофракциям кальцита, доломита, анкерита, сидерита. Анализируемый материал в большинстве случаев классифицируется как первичные карбонатиты на основе петрографических наблюдений, которыми в породах не регистрируются заметные вторичные минеральные изменения эндогенного или экзогенного типа. К «вторичным карбонатитам» авторы относят гидротермально изменённые, перекристаллизованные, выветрелые, окисленные породы, а также сопутствующие гидротермальные карбонатные жилы, туфы, вторичный кальцит. В редких случаях к «вторичным карбонатитам» относят значения δ^{18} Оδ¹³С, значительно отклоняющиеся от диапазонов, типичных для первичных карбонатитов.

Изотопная сводка включает 176 карбонатитовых объектов, по которым имелись два и более парных значений δ^{18} O- δ^{13} C. Из них 153 объекта входят в известный список из 527 карбонатитовых проявлений мира [8]. Этому списку в статье соответствуют названия проявлений и их идентификационные номера (ID). Сверх списка привлечены 23 дополнительных проявления. Лимитируемый объём статьи не позволяет представить полную базу данных и список литературных источников (около 150 названий). Тем не менее по названиям и фамилиям, имеющимся в табличном приложении, большинство источников могут быть найдены в интернете.

На всех изотопных диаграммах горизонтальная ось *x*−δ¹⁸O, ‰ (V-SMOW), вертикальная ось $y - \delta^{13}$ С, ‰ (V-PDV). Такое положение осей имеет значение при регрессионном анализе. На диаграммах на обеих осях длина 1 ‰ выдерживается одинаковой. Это позволяет визуально единообразно сравнивать форму полей точек и угол наклона трендовых линий на разных диаграммах. Лабораторная точность индивидуальных определений $\delta^{18}O$ и δ¹³С не хуже 0,1–0,2 ‰. Для краткости изложения далее используются сокращения: δ¹⁸О- δ^{13} С – парные значения (точки на диаграмме) изотопного состава кислорода и углерода, КП карбонатитовые проявления, *PC* – первичные карбонатиты (от Primary Carbonatites), линейное (нелинейное, изометрическое) КП - карбонатитовое проявление с линейной взаимосвязью (без линейной взаимосвязи) значений δ^{18} О и δ^{13} С, max-min δ^{18} О и max-min δ^{13} С – разность между максимальным и минимальным значениями в выборке.

Сводные данные. В изотопную сводку включены 1829 индивидуальных значений δ^{18} О- δ^{13} С, классифицируемых авторами как первичные карбонатиты. Все точечные значения вынесены на диаграмме (рис. 1), где они заполняют обширное поле между мантийным значением δ^{18} О около 5,0 ‰ и нормально-осадочными морскими карбонатами (NSC). На этом основана гипотеза широкой контаминации первичного мантийного карбонатитового источника коровым седиментационным материалом [1, 2].

Из тех же литературных источников попутно взяты 299 точечных значений, отнесённых авторами к «вторичным карбонатитам». На диаграмме эти точки занимают наиболее широкое поле. В целом оно смещено в направлении увеличения δ^{18} О (утяжеления кислорода), в том числе в сторону гипергенных почвенных карбонатов (SC), образующихся под действием метеорных вод.

Рис. 1. Значения $\delta^{\scriptscriptstyle 18}\text{O}{-}\delta^{\scriptscriptstyle 13}\text{C}$ в индивидуальных пробах карбонатитов мира:

1 – в первичных (*n* = 1829) и *2* – вторичных (*n* = 299) карбонатитах. NSC – нормально-осадочные морские карбонаты; SC – почвенные карбонаты [7]. Контур *PC*-90 обоснован на рис. 7

Fig. 1. The $\delta^{18}O-\delta^{13}C$ values in individual samples of carbonatites from around the world:

1 - in primary carbonatites (n = 1829) and 2 - in secondary carbonatites (n = 299). NSC – marine normal sedimentary carbonates; SC – soil carbonates [7]. The PC-90 contour is based on Fig. 7

Более интересный результат даёт трендовый анализ изотопных данных в пределах отдельных КП. В рассматриваемых 176 объектах число точек δ^{18} O- δ^{13} C колеблется от 2 до 54. Трендовый анализ выполнен в 155 КП, в которых имеются три и более изотопных точек. Таблица с этими КП приведена в конце статьи. Для каждого из КП в программе Microsoft Excel 97-2003 построена точечная диаграмма и линия тренда (регрессии), рассчитаны уравнение регрессии y = kx + b, включающее угловой коэффициент k и постоянное число b, а также коэффициент детерминации (достоверности аппроксимации) R². Коэффициент R² равен квадрату коэффициента парной корреляции и отражает степень линейной взаимосвязи значений: от полного её отсутствия (R^2 = = 0) до полной функциональной зависимости $(R^2 = 1,0)$. Примеры диаграмм приводятся на последующих рисунках. Линия тренда на диаграммах изображается как вектор, направленный в сторону увеличения δ^{18} О. В использованной литературе противоположное направление вектора, в сторону уменьшения δ^{18} О, в рассматриваемых КП практически не допускается. Для каждого КП рассчитаны минимальное, максимальное и среднее значения δ^{18} О и δ^{13} С, разности max-min δ^{18} О и max-min δ^{13} С, а также начальная точка линии тренда с координатами $x = \min \delta^{18}$ О и $y (\delta^{13}$ С) = kx + b.

Вначале построений была выбрана группа КП, удовлетворяющих двум «жёстким» условиям – число проб в выборке не менее четырёх и разность между максимальным и минимальным значениями max-min δ^{18} О более 2,0 ‰. Линейный тренд в выборке определялся по визуальному восприятию поля точек на диаграммах и значению коэффициента R^2 . Примеры диаграмм в порядке увеличения R^2 приведены на рисунке 2. В этом ряду линейная форма поля точек начинает визуально уверенно фиксироваться с проявления Четлас-

Рис. 2. Примеры трендового анализа парных значений δ¹⁸О ‰ (ось *x*) и δ¹³С ‰ (ось *y*) в группе КП с max–min δ¹⁸O более 2,0 ‰ (в скобках здесь и далее ID):

а – Зандкопсдрифт (122), b – Глейбат-Лафуд, c – Майоа (337), d – Четласский (413), e – Тапира (299), f – Чиригуэло (310), g – Ваджилитаг (318), h – Баилундо (5), i – Мато-Прето (306). Синий вектор – линия регрессии с начальной точкой. КП расположены в порядке увеличения коэффициента R²

Fig. 2. Examples of the trend analysis of the paired values $\delta^{18}O \ \infty \ (x-axis)$ and $\delta^{13}C \ \infty \ (y-axis)$ in the group of carbonatite occurrences with the difference max-min $\delta^{18}O$ of more than 2.0 ∞ (in brackets here and below – ID):

a – Zandkopsdrift (122), b – Gleibat-Lafhouda, c – Miayoa (337), d – Chetlassky (413), e – Tapira (299), f – Chiriguelo (310), g – Wajilitage (318), h – Bailundo (5), i – Mato Preto (306). The blue vector is the regression line with the starting point. The carbonatite occurrences are arranged in order of increasing the coefficient R^2

Рис. 3. Примеры трендового анализа значений δ¹⁸O ‰ (ось *x*) и δ¹³C ‰ (ось *y*) в группе КП с разностью max-min δ¹⁸O от 1,0 до 2,0 ‰:

a – Волтуре, b – Вишневогорский (414), c – Хома-Маунтин (33), d – Матонго (16), e – Лайвайоки (489), f – Магнет-Ков (282). КП расположены в порядке увеличения коэффициента R^2

Fig. 3. Examples of the trend analysis of the values $\delta^{18}O \ \infty \ (x-axis)$ and $\delta^{13}C \ \infty \ (y-axis)$ in the group of carbonatite occurrences with the difference max-min $\delta^{18}O$ from 1.0 to 2.0 ∞ :

a – Vulture, b – Vishnevogorsky (414), c – Homa Mountain (33), d – Matongo (16), e – Laivajoki (489), f – Magnet Cove (282). The carbonatite occurrences are arranged in order of increasing the coefficient R^2

ский ($R^2 = 0,30$) (см. рис. 2, *d*). Это значение соответствует коэффициенту парной корреляции 0,55, который в статистике характеризует начало отчётливой линейной взаимосвязи. Таким способом рассчитанный линейный тренд устанавливается в 57 КП, имеющих R^2 от 0,30 до 0,99.

В группе КП с разностью max-min δ^{18} O от 1,0 до 2,0 ‰ также можно выделить достоверно линейные КП путём повышения порога минимального R^2 . На рисунке 3 в ряду КП в порядке увеличения R^2 отчётливый линейный тренд фиксируется у КП с R^2 более 0,50 (соответствует коэффициенту парной корреляции более 0,71). В эту группу попадают 7 КП.

Наряду с отчётливо линейными КП (R^2 более 0,30) линейная форма поля точек видна у некоторых КП с R^2 менее 0,30. Такие КП проявляют визуальную линейность за счёт большой растянутости точек вдоль оси δ^{18} O (рис. 4). Мерой растянутости может служить отношение разностей max–min δ^{18} O / max–min δ^{13} C. При отношении более 2,75 такие КП на диаграммах кажутся линейными (всего 19 объектов).

Есть примеры КП, в которых отсутствие линейности можно объяснить совмещением двух разнонаправленных трендов (рис. 5, *a*). Совместное действие трендов приводит прежде всего к увеличению дисперсии δ^{13} С, что «размывает» общее поле точек с потерей линейности. Вместе с тем, среди КП с широким диапазоном δ^{18} О есть примеры, где их линейность достигается включением в выборку удалённых по оси δ^{18} О точек (см. рис. 5, *b*). Не исключено, что удалённые точки принадлежат «вторичным карбонатитам», в которых эпигенетические изменения не были зарегистрированы при петрографическом изучении.

Рассмотренные выше линейные КП в базе данных представлены 83 объектами (57 + + 7 + 19). Остальные 72 КП, не удовлетворяю-

Рис. 4. Примеры визуально линейных КП с R^2 менее 0,30. Отношение max-min δ^{18} O / max-min δ^{13} C:

а – Кайзерштуль (499) – 3,09, *b* – Циганбулак – 4,64

Fig. 4. Examples of visually linear carbonatite occurrences with R^2 less than 0.30. The ratio max-min $\delta^{18}O$ / max-min $\delta^{13}C$:

a – Kaiserstuhl – 3,09, b – Qieganbulake – 4,64

щие вышеизложенным критериям линейности, можно отнести к группе нелинейных, то есть без выраженной линейной взаимосвязи индивидуальных значений δ¹⁸O-δ¹³C. Нелинейные КП по форме полей точек можно подразделить на изометрические (32 объекта) и остальные промежуточные (переходные к линейным). Мерой изометричности может служить отношение разностей max-min δ¹⁸O / max-min δ¹³C. В изометрических КП оно менее 1,9 (рис. 6).

Изометрические КП имеют меньший, чем линейные, но довольно широкий диапазон разностей: max-min δ^{18} O от 1,0 до 9,6 ‰ и max-min δ^{13} C от 0,7 до 5,4 ‰. Крайними примерами могут служить проявления Ока и Амба-Донгар (см. рис. 6, *b*, *e*). Для изометрических КП характеристической является средняя точка со среднеарифметическими значениями δ^{18} O и δ^{13} C. Отклонения от неё в разные стороны до некоторого предела являются статистически случайными. Но можно предположить, что широкие диапазоны (max-min δ^{18} O более

Рис. 5. Примеры совмещения разных трендов $\delta^{\scriptscriptstyle 18}\text{O-}\delta^{\scriptscriptstyle 13}\text{C}$ в КП:

а – пример в целом нелинейного КП Ошурково (448) ($R^2 = 0,002$), в котором совмещены два разных линейных тренда с R^2 0,302 и 0,903; b – пример линейного КП Монте-Верде (6) ($R^2 = 0,756$), который приобрёл линейность за счёт удалённых по оси δ^{18} О точек ($R^2 = 0,162$)

Fig. 5. Examples of combining different $\delta^{18}\text{O-}\delta^{13}\text{C}$ trends in carbonatite occurrences:

a – an example of a generally nonlinear Oshurkovo (448) carbonatite occurrence ($R^2 = 0,002$), in which two different linear trends with R^2 0,302 and 0,903 are combined; b – an example of a linear Monte Verde (6) carbonatite occurrence ($R^2 = 0,756$),) that has acquired the linearity due to remote points along the δ^{18} O axis ($R^2 = 0.162$)

4–5 ‰) обусловлены смешением разнонаправленных линейных трендов, как это показано на рис. 5, *а*. Ситуация со смешением трендов более подробно смоделирована в [3]. В выборках изометрических КП формально также может быть вычислена начальная точка векторов. Она мало отличима от точки с минимальным значением min δ^{18} O и средним значением aver δ^{13} C (см. рис. 6).

Рис. 6. Примеры изометрических КП:

отношение max–min δ¹⁸O / max–min δ¹³C: *a* – Альнё (515) – 0,54, *b* – Ока (230) – 0,77, *c* – Тамазерт (64) – 0,98, *d* – Весёлое (450) – 1,24, *e* – Амба-Донгар (356) – 1,78, *f* – Турий Мыс (406) – 1,79

Fig. 6. Examples of isometric carbonatite occurrences:

Ratio max–min δ^{18} O / max–min δ^{13} C: *a* – Alnö (515) – 0,54, *b* – Oka (230) – 0,77, *c* – Tamazert (64) – 0,98, *d* – Veseloe (450) – 1,24, *e* – Amba-Dongar (356) – 1,78, *f* – Turiy Mys (406) – 1,79

Преобладающее распространение в изотопной системе δ^{18} O- δ^{13} C отчётливо линейных КП и вероятность потери линейности в изометрических КП в результате смешения разных трендов – оба фактора позволяют применить в качестве характеристической начальную точку трендов для всего множества КП. Начальные и средние точки в 155 КП отображены на диаграмме (рис. 7). Начальные точки относительно средних смещены влево. Следует также заметить, что начальная точка некоторых КП может быть смещена на диаграмме влево в случае появления при дальнейшем изучении дополнительных изотопных значений с наименьшим δ^{18} О. На диаграмме очерчен полигональный контур – бокс РС-90, включающий 90 % начальных точек. Координаты его

угловых точек δ^{18} O- δ^{13} C ‰: (+5÷-8), (+5÷-5), (+5,5÷-2,5), (+12÷-2,5), (+12÷-7), (+9÷-8,5). Своим левым краем бокс совпадает с первичным мантийным значением δ^{18} O около 5 ‰, определяемым по изотопии перидотитов и океанических базальтов [4]. *PC*-90 шире бокса первичного изверженного карбонатита – PIC [5] и значительно удалён от боксов нормально-осадочных морских и почвенных карбонатов. Бокс *PC*-90 можно воспринимать как «обычный» для начальных точек δ^{18} O- δ^{13} C в первичных карбонатитах. За его пределы выходят немногочисленные объекты, для которых желателен поиск причин отклонения от «обычных» значений.

На диаграмме (рис. 8, *а*) вынесены начальные точки и линии трендов для 64 отчётли-

Рис. 7. Средние точки δ¹⁸O-δ¹³C (крестики) и начальные точки трендов (кружки) в 155 проявлениях первичных карбонатитов [5]:

полигональный синий контур *PC*-90 охватывает 90 % начальных точек; штриховой чёрный контур – первичные изверженные карбонатиты [5]; NSC – нормально-осадочные морские карбонаты; SC – почвенные карбонаты

Fig. 7. Mean points of δ^{18} O- δ^{13} C (crosses) and initial points of the trends (circles) in 155 occurrences of primary carbonatites [5]:

The polygonal blue contour PC-90 embraces 90 % of the initial points; the dashed black contour – primary igneous carbonatites [5]; NSC – marine normal-sedimentary carbonates; SC – soil carbonates

во линейных КП. На диаграмме просматриваются три направления трендов. Они также выделяются при статистическом анализе углового коэффициента k (см. рис. 8, b). Коэффициент k изменяется в широком диапазоне от -0,7 до +1,5, в котором с долей условности считываются три раздельных интервала. На диаграмме интервалы показаны в форме секторов, а векторами – средние интервальные значения. Резко доминирует сектор k в диапазоне 0,0÷+0,6 (средний вектор +0,31). Подчинённое распространение имеют сектор 0,0÷-0,7 и сектор +0,6÷+1,5.

Бокс *PC*-90 по визуальному восприятию на диаграмме (см. рис. 8, *a*) можно подразделить по вертикали на две части по значению -5,2 ‰ δ^{13} С. Такое разделение видится в левой части диаграммы в расположении линейных трендов и начальных точек. Аргументом в пользу такого разделения может служить и тот факт, что начальные точки проявлений, находящихся в одном регионе, часто располагаются на диаграмме в одной её части – верхней или нижней (рис. 9). Впрочем, есть и располагающиеся в обеих частях (Индия-запад, Кольский). Различие по значению δ^{13} С между двумя группами КП на региональном уровне может указывать на гетерогенность глубинных карбонатитовых источников по изотопному составу углерода.

Во многих КП присутствуют разные минеральные типы карбонатитов, формирующихся, как правило, в разные изверженные фазы или стадии. Наиболее распространены кальцитовые и доломитовые карбонатиты, редки анкеритовые и сидеритовые. На диаграммах приведены примеры разного изотопного соотношения двух типов карбонатитов (рис. 10, см. подписи). В целом доминирует тенденция увеличения δ^{18} О и δ^{13} С в доломитовых и сидеритовых карбонатитах по сравнению с кальцитовыми.

Рис. 8. Начальные точки б¹⁸О-б¹³С и линии тренда в отчётливо линейных КП:

a – линии тренда δ^{18} O- δ^{13} C (чёрные векторы) и их начальные точки (синие) в 64 первичных карбонатитовых проявлениях мира. Бокс *PC*-90 (синий контур) подразделён на две части значением -5,2 ‰ δ^{13} C (красный пунктир); жёлтые стрелки – предполагаемые два центра начальных точек и исходящие из них векторы; *b* – диаграмма углового коэффициента *k* в уравнении регрессии *y* = *kx* + *b*. Раздельно показаны интервалы *k*: 0,0÷-0,7 (среднее -0,29 из *n* = 13); 0,0÷0,6 (среднее +0,31 из *n* = 43); 0,6÷1,5 (среднее +0,9 из *n* = 8)

Fig. 8. δ¹⁸O-δ¹³C starting points and trend lines in distinctly linear carbonatite occurrences:

a – the δ^{18} O- δ^{13} C trend lines (black vectors) and their initial points (blue) in 64 primary carbonatite occurrences worldwide. The box PC-90 (blue contour) is subdivided into two portions by the value of δ^{13} C -5.2 ‰ (red dotted line); yellow arrows – two assummed centers of initial points and vectors emanating from them; b – diagram of the angular coefficient k in the regression equation y = kx + b. The following intervals of k are shown separately: 0.0÷-0.7 (average -0.29 of n = 13); 0.0÷0.6 (average +0.31 of n = 43); 0.6÷1.5 (average +0.9 of n = 8)

В использованных литературных источниках содержатся также данные по изотопному составу стронция в карбонатитах. Данные по 99 карбонатитовым проявлениям вынесены на диаграмме (рис. 11) и в прилагаемой таблице. Использованы минимальное начальное значение (⁸⁷Sr/⁸⁶Sr)*i* и минимальное начальное значение min δ^{18} O. Из диаграммы видно, что корреляция между значениями не обнаруживается. Нет корреляции и в паре ⁸⁷Sr/⁸⁶Sr- δ^{13} C (диаграмма не приводится). Наклонная линия на диаграмме – это линия смешения мантийного источника (⁸⁷Sr/⁸⁶Sr = 0,702 и

нанта (⁸⁷Sr/⁸⁶Sr = 0,710 и δ¹⁸O = 20 ‰) при условии равной концентрации стронция в обоих источниках. Известно, что карбонатиты в большинстве случаев обогащены стронцием по сравнению с осадочными карбонатами. При таком условии полоса точек выше линии смешения на диаграмме может отражать седиментационную коровую контаминацию магм [2]. Однако широкий разброс точек ниже линии оставляет место для других гипотез, включая гетерогенность первичного источника по изотопному составу стронция на уров-

δ¹⁸О = 5 ‰) и седиментационного контами-

Рис. 9. Начальные точки δ¹⁸O-δ¹³C в карбонатитовых проявлениях в разных регионах мира (красным пунктиром проявления подразделены на две части по значению -5,2 ‰ δ¹³C):

1 – Кольский – Хибины, Озёрная Варака, Телячий Остров, Турий мыс, Ковдор, Салланлатви, Вуориярви, Тикшеозеро; 2 – Финляндия – Сокли, Лайвайоки, Кортеярви, Силинярви; 3 – Малави (Африка) – Канганкунде, Сонгве-Хилл, Чилва; 4 – Гренландия – Гардинер, Гренедел-Ика, Какарсук, Игалико; 5 – Южная Сибирь – Жидой, Южное, Халюта, Ошурково; 6 – Урал – Вишневогорский, Потанино, Булдым; 7 – Южная Америка (Бразилия, Боливия, Парагвай) – Серро-Сапо, Чиараки, Ангико-Диас, Каталан-II, Каталан-I, Салитри, Аракса, Тапира, Джукия, Якупиранга, Барра-Итапирапуа, Мато-Прето, Чиригуэло, Серра-Негра; 8 – Индия-запад – Сарну-Дандали, Мундвара, Невания, Сиривасан, Амба-Донгар, Амба-Донгар-дайка

Fig. 9. Initial points of δ^{18} O- δ^{13} C in carbonatite occurrences in various regions of the world (the occurrences are subdivided into two portions by the value δ^{13} C -5,2 ‰, shown by the red dotted line):

1 – Kola region – Khibiny, Ozernaya Varaka, Telyachy Island, Turiy Mys, Kovdor, Sallanlatvi, Vuoriyarvi, Tiksheozero; 2 – Finland region – Sokli, Laivajoki, Kortejärvi, Siilinjarvi; 3 – Malawi region (Africa) – Kangankunde, Songwe Hill, Chilwa Island; 4 – Greenland region – Gardiner, Grcnnedal-Ika, Qaqarssuk, Igaliko; 5 – Southern Siberia region – Zhidoy, Yuzhnoye, Khaluta, Oshurkovo; 6 – Ural region – Vishnevogorsky, Potanino, Buldym; 7 – South America region (Brazil, Bolivia, Paraguay) – Cerro Sapo, Chiaracke, Angico dos Dias, Catalan II, Catalan I, Salitre, Araxa, Tapira, Juquia, Jacupiranga, Barra do Itapirapua, Mato Preto, Chiriguelo, Serra Negra; 8 – India-West region – Sarnu-Dandali, Mundwara, Newania, Siriwasan, Amba-Dongar, Amba-Dongar-Dike

не мантии. Нижнее левое поле на диаграмме ($^{87}Sr/^{86}Sr < 0,704$ и $\delta^{18}O < 8,5\%$) можно считать «мантийным» в изотопной системе Sr–O.

Заключение. По 176 карбонатитовым проявлениям мира собраны данные по изотопному составу кислорода и углерода в первичных карбонатитах – всего 1829 парных значений δ¹⁸O-δ¹³C. По 155 проявлениям выполнен статистический анализ изотопных выборок по формуле линейной регрессии y = kx + b. Линейные тренды обнаруживаются более чем в половине объектов, что видно на диаграммах в координатах $\delta^{18}O - \delta^{13}C$ (‰). Трендовые векторы направлены в сторону увеличения $\delta^{18}O$. Векторы характеризуются начальной точкой, наклоном к оси x и коэффициентом детерминации R^2 . Начальная точка имеет минимальное по выборке значение $x = \min \delta^{18}O$ и значе-

Рис. 10. Примеры разного соотношения кальцитовых и доломитовых карбонатитов на диаграмме $\delta^{18}O-\delta^{13}C$:

a – Белая Зима (Нижнесаянский) (439) – нелинейный кальцит и линейный доломит с близкой начальной точкой; *b* – Хааст-Ривер (484) – линейный доломит на продолжении линейного кальцита; *c* – Спитскоп (105) – нелинейный доломит на окончании линейного кальцита; *d* – Пакканаду (369) – доломит и кальцит различаются по δ¹⁸О при одинаковом δ¹³С; *e* – Каотан – доломит и кальцит различаются по δ¹⁸О при одинаковом δ¹³С; *e* – Каотан – доломит и кальцит различаются по δ¹³С при одинаковом δ¹³С; *f* – Карасуг – линейный кальцит и нелинейный сидерит с общей начальной точкой

Fig. 10. Examples of different ratios of calcite and dolomite carbonatites on the $\delta^{18}O-\delta^{13}C$ diagram:

a – Belaya Zima (Nizhnesayansky) (439) – nonlinear calcite and linear dolomite with the closely spaced starting points; b – Haast River (484) – linear dolomite on the continuation of linear calcite; c – Spitskop (105) – nonlinear dolomite at the ending of linear calcite; d – Pakkanadu (369) – dolomite and calcite differ in δ^{18} O with the same δ^{13} C; e – Caotan – dolomite and calcite differ in δ^{13} C with the same δ^{18} O; f – Karasug – linear calcite and nonlinear siderite with the common starting point

ние $y = \delta^{13}$ С, вычисляемое из формулы регрессии. Наклон вектора определяется угловым коэффициентом k, а коэффициент R^2 определяет силу взаимосвязи значений.

Угловой коэффициент k варьируется в широком диапазоне от -0,7 до +1,5, в котором выделяются три трендовых направления. Доми-

нирует тренд с k от 0,0 до +0,6, в среднем +0,31 (прямая корреляция δ^{18} O- δ^{13} C). Размах линий тренда (разность max-min δ^{18} O) колеблется от 1,0 до 10,7 ‰, в среднем 4,6 ‰. В литературе [2, 4, 6] такой тренд принято объяснять действием двух совпадающих по направлению факторов – релеевским высокотемпературным

Рис. 11. Изотопный состав стронция и кислорода в карбонатитовых проявлениях мира

фракционированием карбонатитовых расплавов и (или) седиментационной (коровой) контаминацией расплавов в промежуточных очагах. Второй тренд с коэффициентом k от 0,0 до -0,7 (обратная корреляция δ^{18} O- δ^{13} C) менее распространён, его связывают с дегазацией СО₂ из расплавов. Редок третий тренд с увеличенным коэффициентом k от +0,6 до +1,5 (прямая корреляция δ^{18} O- δ^{13} C). Во всех трёх случаях увеличенные размахи трендов (max-min δ¹⁸О более 5-7 ‰) позволяют предполагать дополнительное воздействие на первичные карбонатиты не зафиксированных при петрографических наблюдениях вторичных процессов – флюидных, низкотемпературных гидротермальных, метаморфических, гипергенных.

У половины карбонатитовых проявлений линейные тренды δ^{18} O- δ^{13} C не отчётливы или отсутствуют (на диаграмме точки образуют поле изометрической формы). Это может быть следствием совместного действия разнонаправленных эндогенных факторов, например, высокотемпературного фракционирования и дегазации расплавов. Исходя из такого предположения, для проявлений без отчётливого линейного тренда δ^{18} O- δ^{13} C также можно вычислять начальную точку и принимать её как наиболее приближенную к первичному изотопному составу изверженных карбонатитов.

В поле начальных изотопных точек δ^{18} О- δ^{13} С на диаграммах оконтурен бокс *PC*-90, включающий 90 % проявлений первичных карбонатитов. Его можно принять как «обычный» для первичных карбонатитов, имеющих существенно глубинный источник вещества при минимальном или умеренном проявлении изотопного фракционирования или контаминации расплавов. За пределами бокса остаются редкие проявления, требующие углублённой петрографической аргументации их первичной природы. Бокс РС-90 имеет довольно отчётливые ограничения с трёх сторон значениями: слева +5,0 ‰ δ¹⁸О, сверху -2,5 ‰ б¹³С, снизу -8,0 ‰ б¹³С. Граница справа +12,0 ‰ δ¹⁸О является произвольной. *РС*-90 по вертикали подразделяется на две части по значению -5,2 ‰ 8¹³C, тем самым предполагаются разные по изотопному составу углерода глубинные источники, что находит подтверждение в региональных различиях карбонатитовых проявлений.

Корреляция в изотопном составе кислорода и стронция в карбонатитах в целом не обнаруживается. Значения ⁸⁷Sr/⁸⁶Sr варьируются в широком диапазоне 0,701–0,707. Это предполагает неоднородность глубинных карбонатитовых источников по изотопии стронция, автономную от изотопной неоднородности по кислороду.

Изотопный состав кислорода, углерода и стронция в первичных карбонатитах мира рассмотрен на обширной статистической базе. Полученные данные подтверждают основные тенденции в изотопной эволюции карбонатитов, обсуждаемые в литературе. Вместе с тем остаётся возможность для дополнительных суждений и обобщений. Начальные точки линейных трендов в выборках карбонатитовых проявлений максимально приближены к первичному изотопному составу О и С, их можно использовать и при анализе изотопных данных по другим типам «мантийных» пород – кимберлитам, основным и щелочным породам. В целом широкие вариации в первичных карбонатитах начального изотопного состава C-O-Sr предполагают гетерогенность глубинных мантийных источников карбонатитовых магм и контаминацию их в промежуточных коровых очагах.

Таблица. Изотопный состав кислорода, углерода и стронция в первичных карбонатитах мира

Table. Isotopic composition of oxygen, carbon, and strontium in primary carbonatites of the world

9	Проявление	Страна	Литературный источник	u	k	q	R^2	δ ¹⁸ O min	8 ¹⁸ O max	δ ¹⁸ O aver	8 ¹³ C min	δ ¹³ C max	8 ¹³ C aver	δ ¹³ C initial	$^{87}\mathrm{Sr/^{86}Sr}$
Ι	2	3	4	5	9	2	8	9	10	11	12	13	14	15	16
1	InOuzzal	Algeria	Ouzegane et al., 1988	2	0,197	-9,57	0,032	7,65	10,27	9,38	-8,92	-6,35	-7,72	-8,06	
က	Catanda-Jango	Angola	Campeny et al., 2015	4	0,410	-9,58	0,367	9,40	10,40	9,95	-6,00	-5,20	-5,50	-5,73	
ഹ	Bailundo	Angola	Pineau et al., 1973; Alberti et al., 1999	œ	0,397	-9,15	0,802	6,70	13,60	9,60	-7,04	-3,09	-5,34	-6,50	
9	Monte Verde	Angola	Pineau et al., 1973; Alberti et al., 1999	15	0,452	-8,61	0,756	5,30	14,30	9,01	-7,00	-1,67	-4,53	-6,21	
10, 11	Tchivira-Bonga	Angola	Alberti et al., 1999	2	0,269	-7,04	0,443	9,42	16,55	12,28	-5,31	-1,88	-3,74	-4,51	
15	Lupongola	Angola	Alberti et al., 1999	10	0,302	-10,16	0,474	7,52	14,04	9,23	-8,32	-6,27	-7,37	-7,88	
16	Matongo	Bourundi	Dolenek 2015; Decree et al., 2015	13	0,410	-8,30	0,589	6,53	8,50	7,54	-5,82	-4,70	-5,21	-5,63	
21	Wadi Tarr	Egypt	Shimron, 1975	က	-0,731	-2,96	0,321	5,20	8,30	6,43	-9,40	-5,30	-7,67	-6,76	0,7042
33	Homa Mountain	Kenya	Dennis and Schrag, 2010	œ	0,199	-5,06	0,572	7,70	9,40	8,51	-3,60	-3,10	-3,36	-3,52	
34	Buru	Kenya	Onuonga, 1997	16	0,117	-5,63	0,091	12,61	16,10	14,48	-4,39	-3,07	-3,94	-4,16	
39	Kangankunde	Malawi	Dennis and Schrag, 2010; Nelson 1987; Broom Fendley et al., 2017	6	-0,372	-1,63	0,136	5,50	10,26	8,49	-6,03	-2,30	-4,79	-3,68	0,7016
47	Chilwa Island	Malawi	Simonetti and Bell, 1994	13	0,086	-3,66	0,073	7,90	14,15	11,39	-3,27	-1,50	-2,68	-2,98	0,7032
51	Songwe Hill	Malawi	Broom- Fendley et al., 2016	4	-0,180	-2,00	0,826	7,80	14,00	11,13	-4,60	-3,40	-4,00	-3,40	
64	Tamazert	Morocco	Bouabdellah et al., 2010; Marks et al., 2009	42	0,048	-6,03	0,003	6,94	10,70	8,60	-6,80	-2,98	-5,62	-5,70	0,7033
	Gleibat Lafhouda	Morocco	Bouabdellah et al., 2022	16	0,240	-6,87	0,239	6,00	8,60	7,15	-6,00	-4,60	-5,16	-5,43	0,7032
73	Xiluvo	Mozambique	Melluso et al., 2004	က	-0,101	-4,34	1,000	7,50	13,00	9,63	-5,66	-5,10	-5,32	-5,10	0,7032
82	Lofdal	Namibia	Vistorina Nandigolo, Do Cabo. 2013	က	0,272	-7,32	0,901	6,43	10,30	8,08	-5,72	-4,58	-5,13	-5,57	0,7027

Руды и металлы № 3/2024, с. 5–27 / Ores and metals № 3/2024, р. 5–27 DOI: 10.47765/0869-5997-2024-10011

16		0,7039	0,7028			0,7033	0,7044		0,7034		0,7025	0,7026			0,7026		0,7032
15	-5,14	-4,07	-2,80	-3,14	-6,84	-6,60	-6,78	-4,20	-4,89	-8,22	-3,74	-3,25	-5,31	-6,30	-5,10	-8,00	-5,63
14	-5,06	-3,85	-2,45	-2,40	-6,50	-5,77	-6,86	-3,73	-4,70	-8,45	-3,02	-3,13	-5,23	-5,42	-4,96	-7,96	-5,43
13	-4,80	-3,10	-1,27	-1,90	-6,00	-3,90	-6,30	-2,96	-3,80	-8,20	-1,60	-2,80	-4,90	-4,66	-4,52	-7,20	-4,50
12	-5,20	-4,28	-2,93	-3,00	-7,20	-8,80	-7,14	-4,27	-5,40	-8,90	-3,85	-3,38	-5,80	-6,31	-5,37	-8,42	-6,14
11	8,44	9,06	14,14	13,32	11,93	14,95	7,47	9,43	7,48	10,90	8,84	8,04	8,53	10,30	9,46	8,08	6,96
10	10,60	10,20	16,64	14,30	12,50	16,80	9,30	12,77	9,70	14,30	11,20	8,90	10,70	12,03	10,54	8,34	7,70
9	7,10	8,05	11,70	10,90	11,40	13,20	5,78	7,43	5,90	9,20	7,30	7,30	7,70	6,91	8,94	7,91	6,44
8	0,347	0,232	0,805	0,687	0,600	0,103	0,072	0,989	0,082	0,980	0,638	0,199	0,101	0,832	0,220	0,010	0,068
2	-5,60	-5,84	-2,51	-6,31	-14,25	-12,90	-6,48	-5,95	-5,60	-6,99	-7,19	-4,41	-6,00	-8,09	-7,50	-9,95	-7,94
9	0,064	0,219	-0,024	0,290	0,650	0,477	-0,052	0,235	0,121	-0,133	0,472	0,159	0,090	0,259	0,268	0,246	0,359
5	2	4	œ	ы	4	10	6	က	13	4	14	11	9	22	œ	6	26
4	Reid and Cooper, 1992	Suwa et al., 1975	Harmer 1999, Suwa et al., 1975	Clarke, 1989	Suwa et al., 1975	Ogungbuy et al., 2015	Bell and Keller 1995; Halama et al., 2007	Zaitsev et al., 2013	Suwa et al., 1975; Dennis and Schrag, 2010; Dolenek, 2015	Deines and Gold, 1973; Benkó et al., 2021	Ackerman et al., 2021; Benkó et al., 2021; Dennis and Schrag, 2010	Deines and Gold, 1973; Benkó et al., 2021; Ackerman et al., 2021	Mader, 1986; Chakhmouradian et al., 2015	Trofanenko, 2014	Çimena et al., 2019	Chakhmouradian et al., 2008	Dennis and Schrag, 2010; Chen and Simonetti, 2015; Haynes et al., 2003
c,	Namibia	South Africa	South Africa	South Africa	South Africa	South Africa	Tanzania	Tanzania	Tanzania	Uganda	Uganda	Uganda	Canada	Canada	Canada	Canada	Canada
7	Dicker Willem	Phalaborwa	Spitskop	Kruidfonten	Premier Mine	Zandkopsdrift	Oldoinyo Lengai	Kerimasi	Panda Hill (Mbeya)	Fort Portal	Tororo	Sukulu	Aley	Wicheeda	Howard Creek	Eden Lake	Oka
I	89	103	105	109	113	122	126	127	142	146	156	157	173	176	177	191	230

Продолжение таблицы

I	2	co	4	5	9	2	8	9	01	11	12	13	14	15	I6
243	Aillik Bay	Canada	Tappe et al., 2006	14	0,004	-3,67	0,000	9,60	13,20	10,83	-4,80	-2,70	-3,63	-3,63	0,7039
249	Gardiner	Greenland	Nielsen and Buchardt, 1985	က	0,587	-9,97	0,935	10,30	12,00	10,97	-3,90	-2,90	-3,53	-3,93	
257	Grcnnedal-Ika	Greenland	Pearc, 1997; Coulsonetal, 2003; Halama et al., 2005	18	0,011	-4,48	0,000	6,65	8,61	7,70	-5,03	-3,90	-4,40	-4,41	0,7029
258	Qaqarssuk	Greenland	Knudsen and Buchardt, 1991	16	0,249	-5,35	0,219	6,90	10,39	7,71	-4,68	-2,74	-3,43	-3,64	
260	Igaliko	Greenland	Coulsonetal, 2003	6	0,142	-5,66	0,276	8,60	19,10	13,02	-5,50	-2,30	-3,81	-4,44	0,7027
263	Bearpaw Mountains (Rocky Boy)	NSA	Dennis and Schrag, 2010	œ	1,125	-17,53	0,807	8,30	9,00	8,70	-8,30	-7,40	-7,74	-8,19	
265	Bear Lodge (Bull Hill)	USA	Moore, 2014	15	0,385	-13,07	0,313	8,70	13,60	10,62	-10,20	-6,90	-8,98	-9,72	0,7046
272	Wet Mountains	USA	Armbrustmacher, 1979	4	0,015	-4,53	0,001	7,10	10,00	8,88	-4,90	-3,20	-4,40	-4,43	
275	Iron Hill	USA	Jones et al., 2013; Bczertschi, 1957; Hugh et al., 1966; Ackerman et al., 2021	4	0,561	-9,98	0,960	7,30	11,20	9,05	-5,90	-3,40	-4,70	-5,88	0,7035
282	Magnet Cove	NSA	Haynes et al., 2003; Nelson, 1987; Dennis, 2010	4	0,278	-7,60	0,886	7,03	8,70	7,61	-5,66	-5,20	-5,48	-5,64	0,7035
285	Cerro Sapo	Bolivia	Schultz, 2004	4	-0,256	-5,88	0,496	7,16	11,00	9,84	-9,18	-7,67	-8,39	-7,71	0,7034
286	Chiaracke	Bolivia	Schultz, 2004	က	-1,900	17,39	0,380	11,90	12,30	12,10	-6,16	-4,94	-5,60	-5,22	0,7035
289	Angico dos Dias	Brazil	Antonini et al., 2003	16	0,071	-7,52	0,032	11,92	15,82	14,78	-7,09	-5,70	-6,48	-6,68	0,7033
293	Catalao II	Brazil	Guarino et al., 2016	10	-0,105	-5,08	0,047	8,45	9,48	8,79	-6,35	-5,68	-6,00	-5,96	0,7050
294	Catalao I	Brazil	Cordeiro et al., 2010	S	-0,282	-2,67	0,864	9,20	13, 23	10,86	-6,60	-5,37	-5,74	-5,27	0,7051
295	Serra Negra	Brazil	Speziale et al., 2020	4	0,744	-12,32	0,529	7,23	8,23	7,50	-7,35	-6,18	-6,75	-6,94	
296	Salitre	Brazil	Brod and Affonso, 1999	14	0,306	-9,22	0,491	6,90	9,30	7,76	-7,20	-6,20	-6,85	-7,11	

Руды и металлы № 3/2024, с. 5–27 / Ores and metals № 3/2024, р. 5–27 DOI: 10.47765/0869-5997-2024-10011

0,7061	-6,95	-5,97	-3,90	-6,90	8,03	9,70	7,00	0,798	-13,62	0,953	2	Zengqian Hou et al., 2009	China	Maoniuping	340
	-6,05	-5,94	-5,71	-6,08	7,58	8,09	6,92	0,343	-7,21	0,167	5	Cheng Xu et al., 2008	China	Shaxiongdong	338
0,7036	-6,06	-5,23	-3,32	-6,60	11,14	12,51	9,41	0,263	-10,58	0,481	10	Gimen et al., 2018	China	Miaoya	337
	-6,60	-6,71	-6,36	-6,90	7,87	8,78	7,22	0,212	-5,43	-0,162	9	Xu et al., 2010	China	Dashigou	332
0,7056	-3,85	-3,82	-3,30	-4,11	9,71	12,00	8,24	0,015	-4,04	0,022	13	Ye et al., 2013; Y. Jia and Y. Liu, 2023	China	Qieganbulake	
	-6,75	-6,03	-4,60	-7,30	14,24	17,70	11,90	0,386	-10,41	0,308	12	Yang X et al., 2000; Le Bas, 2000	China	Bayan Obo (dike)	323
0,7037	-3,91	-4,62	-3,90	-5,80	7,62	9,50	6,40	0,674	-0,20	-0,580	6	Song et al., 2017	China	Wajilitage	318
0,7072	-7,78	-6,36	-3,97	-8,08	14,97	19,44	9,90	0,546	-10,57	0,281	20	Censi et al., 1989; Castorina et al., 1997	Paraguay	Chiriguelo	310
	-5,05	-4,85	-4,66	-5,10	10,71	11,88	9,49	0,833	-6,65	0,168	9	Nascimento et al., 2023	Brazil	Morro Preto	
0,7047	-7,18	-1,89	0,80	-7,90	12,06	14,61	8,00	0,912	-17,59	1,302	24	Santos and Clayton, 1995; Andrade et al., 1999; Comin- Chiaramonti et al., 2001; Speziale et al., 2020	Brazil	Mato Preto	306
0,7045	-6,46	-5,91	-5,40	-6,40	8,34	9,40	6,70	0,785	-8,68	0,332	6	Andrade et al., 1999	Brazil	Barra do Itapirapua	305
0,7050	-7,21	-6,34	-5,40	-7,40	7,28	8,70	5,40	0,630	-9,63	0,448	25	Gomide et al., 2016; Comin- Chiaramonti et al., 2007; Haynes et al., 2003; Nelson, 1987	Brazil	Jacupiranga	303
	-5,98	-6,94	-5,82	-8,02	15,12	16,58	13,79	0,778	3,94	-0,720	ω	Speziale et al., 2020	Brazil	Juquia	302
0,7052	-7,84	-6,54	-3,50	-8,30	9,32	14,70	5,40	0,414	-9,64	0,332	45	Brod and Affonso, 1999	Brazil	Tapira	299
0,7050	-7,43	-6,63	-4,80	-7,20	10,83	13,80	8,70	0,640	-10,71	0,377	æ	Santos and Clayton, 1995; Speziale et al., 2020	Brazil	Araxa	298
16	15	14	13	12	II	10	6	8	2	9	5	4	co	0	I
паблицы	ление п	Продол	-												

Продолжение таблицы

I	7	3	4	5	9	2	8	9	10	11	12	13	14	15	16
340	Muluozhai	China	Zengqian Hou et al., 2009	വ	-0,067	-6,14	0,048	8,40	9,10	8,75	-6,80	-6,60	-6,72	-6,70	
	South Qinling	China	Cheng Xu et al., 2014	17	0,487	-10,35	0,385	8,62	14,36	11,45	-6,96	-3,54	-4,78	-6,16	
	Caotan (calcite)	China- Qinling	Chun-Wan Wei et al., 2020	ω	0,299	-9,41	0,657	7,49	9,96	8,50	-7,19	-6,11	-6,88	-7,17	0,7037
	Caotan (dolomite)	China- Qinling	Chun-Wan Wei et al., 2020	10	-0,108	-2,47	0,080	6,98	8,44	7,96	-3,58	-3,09	-3,33	-3,23	0,7057
346	Sarnu-Dandali	India-west	Ray and Rames, 1999; Ray et al., 2000	2	0,585	-10,31	0,913	8,20	10,50	8,91	-5,70	-4,20	-5,10	-5,52	
349	Mundwara	India-west	Ray and Rames, 1999; Ray et al., 2000	ω	0,723	-10,89	0,948	6,00	10,10	7,54	-6,50	-3,70	-5,44	-6,55	
350	Newania	India-west	Viladkar and Ramesh, 2014	6	0,293	-7,58	0,441	7,60	14,50	11,67	-5,70	-2,50	-4,31	-5,35	0,7021
355	Siriwasan	India-west	Viladkar and Gittins, 2016	11	-0,074	-4,81	0,044	8,50	17,80	11,60	-7,40	-3,50	-5,67	-5,44	0,7054
356	Amba Dongar	India-west	Gwalani et al., 2010; Viladkar and Ramesh, 2014; Simonetti et al., 1995; Ray and Rames, 2000; Amit Tiwari, 2016	50	0,029	-4,51	0,004	7,20	16,80	10,79	-7,50	-2,10	-4,20	-4,31	0,7055
356	Amba Dongar - dike	India-west	Viladkar and Ramesh, 2014; Gwalani et al., 2010	21	0,144	-5,81	0,340	7,60	16,90	11,75	-5,20	-2,40	-4,11	-4,71	
357	Swangkre	India-east	Ray et al., 1999	2	-0,164	-2,00	0,107	9,30	9,70	9,51	-3,70	-3,50	-3,60	-3,52	
358	Sung Valley	India-east	Ray et al., 1999; Srivastava et al., 2005; Viladkar and Ramesh, 2014; Amit Tiwari, 2016	40	-0,209	-1,46	0,145	6,60	11,50	7,67	-4,50	-2,20	-3,07	-2,84	0,7047
360	Samchampi	India-east	Ray et al., 1999	11	0,068	-4,07	0,004	7,00	7,60	7,25	-3,80	-3,00	-3,60	-3,60	0,7047
365	Hogenakkal	India-south	Pandit, 2002	4	-0,368	-3,09	0,234	8,10	8,40	8,23	-6,20	-6,00	-6,13	-6,08	0,7016

Руды и металлы № 3/2024, с. 5–27 / Ores and metals № 3/2024, р. 5–27 DOI: 10.47765/0869-5997-2024-10011

© Болонин А. В., 2024 © Bolonin A. V., 2024

1	~	c:	4	ις.	ų	~	œ	6	10	11	13	13	Продол	15 15	таблицы 16
366	Samalpatti	India-south	Ackerman et al., 2017	9	-0,182	-1,54	0,251	10,10	12,40	10,78	-3,99	-3,14	-3,50	-3,38	0,7058
367	Sevattur	India-south	Pandit, 2002; Kumar et al., 1998; Ackerman et al., 2017	12	-0,126	-4,12	0,149	7,51	13,20	8,93	-6,40	-4,76	-5,25	-5,07	0,7052
369	Mulakkadu	India-south	Pandit, 2002	S	0,211	-5,35	0,256	7,30	7,78	7,44	-3,90	-3,70	-3,78	-3,81	0,7066
369	Pakkanadu	India-south	Srivastava et al., 2022	28	0,131	-6,90	0,046	7,50	9,10	8,25	-4,90	-6,30	-5,82	-5,92	
369	Pakkanadu	India-south	Srivastava et al., 2022	10	0,395	-8,49	0,389	6,60	7,50	7,01	-6,00	-5,50	-5,72	-5,88	
378	Matcha	Kirgystan	Vrublevskii, 2017	6	0,700	-18,09	0,707	18,00	23,00	20,73	-6,50	-1,90	-3,58	-5,49	0,7070
379	Hongcheon	South Korea	Kim et al., 2005; Kwon and Yeang, 2003	2	0,857	-14,53	0,594	7,96	12,81	9,53	-9,31	-3,89	-6,36	-7,71	
	Yonghwa	South Korea	Seo et al., 2016	2	0,053	-7,49	0,003	7,70	10,40	9,23	-8,20	-5,80	-7,00	-7,08	
380	Mushugai Khuduk	Mongolia	Владыкин и др., 2004	5	0,574	-10,72	0,324	14,60	16,90	15,50	-3,00	-0,70	-1,82	-2,34	0,7054
383	Ulugei	Mongolia	Кулешов, 1986	15	0,095	-10,66	0,025	8,10	12,80	9,76	-11,00	-7,30	-9,78	-9,89	0,7041
393	Seblyavr	Russia-Cola	Кухаренко и др., 1962	က	0,342	-10,66	0,200	10,10	13,90	12,63	-7,40	-4,40	-6,33	-7,20	
398	Khibiny	Russia-Cola	Zaitzev, 1996; Покровский, 2000	29	0,359	-8,36	0,399	5,90	14,30	8,20	-7,80	-2,30	-5,07	-6,25	0,7036
399	Ozernaya Varaka	Russia-Cola	Козлов, 2016	12	-0,748	1,99	0,566	7,40	9,70	8,37	-6,30	-3,70	-4,27	-3,54	0,7032
405	Telyachi Island	Russia-Cola	Beard et al., 1996	4	1,500	-17,44	0,844	8,80	9,40	9,12	-4,14	-3,36	-3,76	-4,24	
406	Turiy Mys	Russia-Cola	Dunworth and Bell, 2001; Demeny et al., 2004; Владыкин и др., 2004	17	-0,073	-2,12	0,022	7,40	8,96	7,94	-3,07	-2,20	-2,70	-2,66	0,7033
407	Kovdor	Russia-Cola	Плюснин и др., 1980; Владыкин и др., 2004	2	-0,051	-1,68	0,031	9,40	15,80	12,10	-3,40	-1,20	-2,30	-2,16	0,7032
408	Sallanlatvi	Russia-Cola	Demeny et al., 2004	4	0,330	-6,75	0,962	10,00	16,60	14,63	-3,50	-1,30	-1,93	-3,45	
409	Vuoriyarvi	Russia-Cola	Demeny et al., 2004; Владыкин и др., 2004; Fomina and Kozlov, 2021	18	0,117	-5,02	0,101	6,80	11,80	8,05	-4,80	-3,40	-4,08	-4,22	0,7056

таблиць	
Продолжение	

16	0,7023	0,7034	0,7020	0,7036		0,7044	0,7031	0,7033	0,7034	0,7072	0,7057	0,7033	0,7031	0,7029
15	-4,76	-4,27	-5,38	-7,67	-5,98	-7,76	-4,47	-4,35	-3,71	-5,59	-3,27	-7,86	-2,63	-5,89
14	-4,90	-3,93	-5,70	-7,10	-6,20	-7,80	-3,89	-3,27	-3,48	-4,18	-2,64	-5,59	-2,87	-5,35
13	-4,50	-3,00	-4,70	-6,30	-5,30	-7,40	-2,90	-1,15	-2,10	-1,00	-2,00	-2,70	-2,60	-4,00
12	-5,30	-4,90	-8,60	-7,90	-7,70	-8,20	-5,30	-4,47	-4,80	-6,20	-3,50	-8,40	-3,10	-6,10
II	7,56	11,01	10,31	7,53	8,16	8,96	8,26	11,88	11,90	11,96	13,84	13,81	12,30	7,68
10	7,70	15,20	15,60	8,00	8,80	10,40	11,60	18,71	17,00	14,70	15,50	14,90	12,50	11,35
9	7,40	8,30	8,00	7,00	7,70	8,00	6, 30	8,00	7,10	6, 20	11,80	12,30	12,00	6,10
8	0,073	0,297	0,144	0,499	0,068	0,011	0,519	0,724	0,020	0,172	0,799	0,460	0,682	0,512
7	1,54	-5,34	-4,25	-14,98	-1,83	-7,41	-6,33	-6,58	-4,00	-7,11	-6,89	-26,38	6,80	-7,94
6	-0,851	0,128	-0,140	1,044	-0,538	-0,044	0,295	0,279	0,040	0,245	0,307	1,506	-0,786	0,336
5	œ	54	18	2	ω	IJ	ω	6	20	5	10	6	က	32
4	Tichomirovd et al., 1992	Удоратина и др., 2014; Шумилова и др., 2012	Луговая и др., 2012; Savko et al., 2023	Недосекова и др., 2012; Nedosekova et al., 2013	Недосекова и др., 2012; Nedosekova et al., 2013	Недосекова и др., 2012; Nedosekova et al., 2013	Владыкин и др., 2004	Кравченко, Багдасаров, 1987; Владыкин и др., 2004	Пономарчук и др., 2020; Покровский, 2000	Проскурнин и др., 2010	Vrublevskii, 2015	Врублевский и др., 2012	Владыкин и др., 2004	Doroshkevich et al., 2016; Владыкин и др., 2004
3	Russia-Cola	Russia- Europe	Russia- Europe	Russia-Ural	Russia-Ural	Russia-Ural	Russia- Taimyr	Russia- Taimyr	Russia- Taimyr	Russia- Taimyr	Russia-Asia	Russia-Asia	Russia-Asia	Russia-Asia
2	Tiksheozero	Chetlassky	Dubravinsky	Vishnevogorsky	Potanino	Buldym	Guli	Essei	Tomtor	East Taimyr	Upper Petropavlovka	Edelveis	Tagna	Nizhnesayansky (Belaya Zima)
I	410	413		414			417	428	430		436	437	438	439

0,7038	-1,31 -0,14 -4,87	-1,59 -0,02 -5,70	-0,80 0,30 -3,60	-2,50 -0,20 -6,60	10,16 9,12 6,55	11,20 10,18 8,30	9,10 8,41 4,60	0,102 0,567 0,300	1,06 -2,05 -2,92	-0,261 0,228 -0,425	10 5 4	Doroshkevich et al., 2007; Ласточкин, 2009 Doroshkevich et al., 2006 Ripp et al., 2019	Russia-Asia Russia-Asia Russia-Asia	Veseloe Pogranichnoe Ulan-Ude	450
0,7048	-3,48	-3,28	-2,90	-3,70	12,37	13,10	11,90	0,447	-8,51	0,422	9	Savelyeva et al., 2015	Russia-Asia	Western Baikal	
0,7053	-6,03	-6,20	-5,00	-7,90	8,75	14,90	5,00	0,002	-6,10	0,013	18	Никифоров и др., 2000; Рипп и др., 2000, 2014	Russia-Asia	Oshurkovo	448
0,7057	-5,47	-5,80	-5,20	-6,20	8,04	9,10	5,40	0,278	-4,81	-0,122	6	Никифоров и др., 2000; Рипп и др., 2000; Дорошкевич, 2013	Russia-Asia	Khaluta	446
0,7063	-5,86	-5,90	-5,50	-6,10	6,60	7,10	6,20	0,001	-5,71	-0,024	က	Никифоров и др., 2000; Рипп и др., 2000	Russia-Asia	Yuzhnoe	445
0,7030	-5,65	-5,53	-5,20	-5,80	7,33	7,50	7,10	0,220	-9,69	0,569	4	Morikiyo et al., 2005	Russia-Asia	Zhidoy	443
	-3,13	-3,32	-2,30	-4,00	16,62	18,60	14,00	0,024	-2,12	-0,072	12	Врублевский, 2003	Russia-Tuva	Kharly	441
0,7043	-3,93	-4,17	-3,70	-4,50	11,14	13,40	9,80	0,301	-2,19	-0,178	2	Никифоров и др., 2006	Russia-Tuva	Karasug-Ulatay	
0,7060	-3,20	-2,17	-1,50	-3,20	6,30	6,80	5,50	1,000	-10,33	1,296	က	Никифоров и др., 2006	Russia-Tuva	Karasug-Chahol	
0,7042	-5,06	-5,45	-3,90	-6,50	11,44	13,50	9,20	0,047	-3,46	-0,174	11	Болонин, 1983; Никифоров и др., 2006	Russia-Tuva	Karasug-siderite	
0,7042	-4,86	-4,30	-3,60	-4,90	11,76	14,70	8,80	0,587	-6,51	0,188	œ	Болонин, 1983; Никифоров и др., 2006	Russia-Tuva	Karasug-calcite	
0,7029	-5,49	-5,57	-5,50	-5,70	7,10	7,60	6,80	0,987	-3,70	-0,263	က	Владыкин и др., 2004	Russia-Asia	Verkhnesayansky (Sredniya Zima)	440
16	15	14	13	12	11	10	6	8	2	9	5	4	co	7	I
na6лицы	и әпнәжі	Продол	,												

Продолжение таблицы

I	2	3	4	5	9	2	8	9	10	11	12	13	14	15	16
452	Murun	Russia-Asia	Vladikin et al., 2004; Покровский, 2000	20	0,236	-9,34	0,111	6,00	10,40	8,42	-9,20	-5,20	-7,36	-7,93	0,7062
453	Seligdar	Russia-Asia	Doroshkevich et al., 2018	വ	0,914	-20,42	0,149	15,90	17,00	16,48	-6,10	-4,10	-5,36	-5,89	0,7042
459	Ingili	Russia-Asia	Владыкин и др., 2004	4	0,172	-7,95	0,928	8,00	13,90	10,75	-6,60	-5,40	-6,10	-6,57	0,7024
460	Arbarastakh	Russia-Asia	Владыкин и др., 2004	က	-0,156	-3,78	0,123	7,60	9,30	8,27	-5,30	-4,60	-5,07	-4,96	0,7025
462	Koksharovsky	Russia-Asia	Октябрьский и др., 2010	6	-0,117	-3,88	0,136	9,00	13,30	11,00	-5,70	-4,20	-5,17	-4,93	0,7036
464	Eppawala	Sri Lanka	Manthilake et al., 2008; Pitawala et al., 2003	27	0,160	-4,96	0,522	7,70	16,40	14,27	-3,55	-1,99	-2,69	-3,73	0,7049
471	Chagatai	Uzbekistan	Шумилова и др., 2012; Лохов и др., 2007	11	0,249	-4,21	0,375	6,50	13,20	10,05	-3,50	-0,40	-1,71	-2,59	
472	South Nam Xe	Vietnam	Thuy et al., 2014	17	0,279	-6,04	0,232	9,10	11,00	9,80	-3,90	-2,70	-3,30	-3,51	0,7082
475	Gifford Creek	Australia	Slezak, Paul, 2019	14	-0,356	-1,87	0,073	9,20	11,10	10,43	-7,10	-5,00	-5,58	-5,14	0,7057
476	Wallaby	Australia	Salier et al., 2004	വ	-0,131	-4,06	0,099	9,24	12,08	10,51	-6,13	-5,03	-5,44	-5,28	0,7033
479	Yungul	Australia	Gwalani et al., 2010	36	0,137	-7,60	0,512	10,40	15,60	13,75	-6,30	-5,10	-5,71	-6,17	
481	Cummins Range	Australia	Downes et al., 2014	2	0,334	-6,72	0,126	7,50	8,80	8,33	-4,20	-3,00	-3,94	-4,22	
484	Haast River	New Zealand	Cooper and Paterson, 2008	10	0,237	-8,35	0,932	6,70	16,20	10,77	-6,70	-4,40	-5,80	-6,76	
488	Sokli	Finland	Demeny et al., 2004	2	0,498	-7,67	0,876	7,10	10,00	7,86	-4,10	-2,60	-3,76	-4,13	
489	Laivajoki	Finland	Nykanen et al., 1997	2	-0,559	-0,63	0,677	5,91	7,44	6,81	-4,92	-3,60	-4,44	-3,93	
490	Kortejärvi	Finland	Nykanen et al., 1997	2	-0,180	-2,69	0,553	6,58	9,30	7,49	-4,33	-3,67	-4,03	-3,87	

Руды и металлы № 3/2024, с. 5–27 / Ores and metals № 3/2024, р. 5–27 DOI: 10.47765/0869-5997-2024-10011

Продолжение таблицы

I	2	3	4	5	9	2	8	9	10	II	12	13	14	15	16
492	Siilinjarvi	Finland	Demeny et al., 2004	5	-0,287	-1,72	0,192	7,40	9,10	8,36	-4,60	-3,60	-4,12	-3,84	0,7014
497	Laacher See	Germany	Hugh et al., 1966; Jones et al., 2013	13	-0,148	-5,51	0,006	6,30	8,30	7,39	-7,70	-3,10	-6,60	-6,44	
498	Rockeskyll (Auf Dickel)	Germany	Riley et al., 1999	က	-0,099	-3,84	0,475	11,10	14,40	12,40	-5,30	-4,80	-5,07	-4,94	0,7041
499	Kaiserstuhl	Germany	Hubberten, 1988; Dolenek, 2015; Dennis and Schrag, 2010	54	-0,030	-5,66	0,013	5,70	16,20	9,69	-7,20	-3,80	-5,95	-5,83	0,7036
	Mt. Vulture	Italy	Stoppa et al., 2016; Rosatelli et al., 2010	4	0,253	-7,53	0,340	10,30	12,00	10,90	-5,20	-4,40	-4,78	-4,93	0,7065
510	Fen	Norway	Broom-Fendley et al., 2016; Andersen, 1987	10	-0,088	-4,14	0,099	5,70	9,28	7,34	-5,10	-3,80	-4,79	-4,65	0,7021
515	Alnö	Sweden	Roopnarain, 2013; Hugh et al., 1966; Jones, Genge, Carmody, 2013	29	0,030	-5,76	0,000	6,40	8,67	7,71	-7,30	-3,09	-5,53	-5,57	0,7029
	Zhlobin	Belarussia	Веретенников и др., 2007	4	-0,197	-2,65	0,012	22,10	23,20	22,73	-8,30	-6,40	-7,13	-7,00	
518	Chernigovsky	Ukraine	Луговая и др., 1978	15	-0,039	-5,38	0,013	5,30	11,70	8,81	-6,50	-4,50	-5,73	-5,59	0,7013
520	Fuerteventura	Spain Canaries	Hoernle et al., 2002; Шумилова и др., 2012	12	-0,271	-3,73	0,223	6,60	8,20	7,32	-6,30	-5,20	-5,72	-5,52	0,7032
524	Fogo	Cape Verdes	Hoernle et al., 2002	4	0,308	-8,73	0,330	5,30	7,90	6,58	-7,50	-5,90	-6,70	-7,09	0,7031
525	Sao Tiago	Cape Verdes	Hoernle et al., 2002	6	0,674	-12,01	0,942	6,90	16,30	12,99	-7,20	-1,00	-3,26	-7,36	
526	Maio	Cape Verdes	Hoernle et al., 2002	က	-0,026	-0,98	0,287	12,30	14,40	13,66	-1,40	-1,30	-1,35	-1,30	

Список литературы

- 1. *Кулешов В. Н.* Изотопный состав и происхождение глубинных карбонатов // Труды ГИН АН СССР. Вып. 405. – М. : Наука, 1986. – 128 с.
- 2. Покровский Б. Г. Коровая контаминация мантийных магм по данным изотопной геохимии // Труды ГИН РАН. Вып. 535. – М. : Наука, 2000. – 222 с.
- Bolonin A. V. Oxygen and Carbon Isotope Composition in Primary Carbonatites of the World: Data Summary and Linear Trends // Open Journal of Geology. 2019. V. 9, № 8. P. 424–439. DOI: 10.4236/ojg.2019.98028.
- Deines P. Stable isotope variations in carbonatites / Carbonatites: Genesis and Evolution. – London : Unwin Hyman, 1989. – P. 301–359.

References

- 1. Kuleshov V. N. Izotopnyi sostav i proiskhozhdenie glubinnykh karbonatov [Isotopic composition and origin of deep carbonates], *Trudy GIN AN SSSR* [*Proceedings of the GIN AS USSR*], Moscow, Nauka Publ., 1986, Iss. 405, 128 p. (In Russ.).
- 2. Pokrovskii B. G. Korovaya kontaminatsiya mantiinykh magm po dannym izotopnoi geokhimii [Crustal contamination of mantle magmas according to isotope geochemistry data], *Trudy GIN RAN* [*Proceedings of the GIN RAS*], Moscow, Nauka Publ., 2000, 222 p. (In Russ.).
- Bolonin A. V. Oxygen and Carbon Isotope Composition in Primary Carbonatites of the World: Data Summary and Linear Trends, *Open Journal* of Geology, 2019, V. 9, No 8, pp. 424–439. DOI: 10.4236/ojg.2019.98028.

- Jones A. P., Genge M., Carmody L. Carbonate Melts and Carbonatites // Reviews in Mineralogy & Geochemistry. – 2013. – V. 75. – P. 289–322.
- Ray I. S., Ramesh R. Rayleigh fractionation of stable isotopes from a multicomponent source // Geochimica et Cosmochimica Acta. – 2000. – № 64. – P. 299–306.
- Salomons W. Chemical and isotopic composition of carbonatites in recent sediments and soils from Western Europe // Journal of Sedimentary Petrology. – 1975. – V. 45, № 2. – P. 440–449.
- 8. *Woolley A. R. and Kjarsgaard B. A.* Carbonatite occurrences of the world: Map and database. – Ottawa : Geological Survey of Canada, 2008.
- 4. Deines P. Stable isotope variations in carbonatites, In Carbonatites: Genesis and Evolution, London, Unwin Hyman Publ, 1989, pp. 301–359.
- Jones A. P., Genge M., Carmody L. Carbonate Melts and Carbonatites, *Reviews in Mineralogy* & *Geochemistry*, 2013, V. 75, pp. 289–322.
- Ray I. S., Ramesh R. Rayleigh fractionation of stable isotopes from a multicomponent source, *Geochimica et Cosmochimica Acta*, 2000, No 64, pp. 299– 306.
- Salomons W. Chemical and isotopic composition of carbonatites in recent sediments and soils from Western Europe, *Joyrnal of Sedimentary Petrology*, 1975, V. 45, No 2, pp. 440–449.
- 8. Woolley A. R. and Kjarsgaard B. A. Carbonatite occurrences of the world: Map and database, Ottawa, Geological Survey of Canada, 2008.

Болонин Александр Васильевич (bolonin.a@inbox.ru) кандидат геолого-минералогических наук, старший научный сотрудник

ФГБУ «Центральный научно-исследовательский геологоразведочный институт цветных и благородных металлов», г. Москва, Россия